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Abstract. In a recent approach to the study of disordered conductors a maximum-entropy 
criterion is used to perform statistical calculations directly on the transfer matrix for the 
full physical system. Quantities of great importance in that approach are averages of 
products of the U and U* matrix elements (U being a unitary matrix) evaluated with the 
invariant measure of the unitary group. In the present paper we evaluate those averages 
that contain up to four U and four U* matrix elements, since they are the ones needed in 
the calculation of the average and covariance of transmission and reflection coefficients. 
The evaluation involves no direct integration at all, but makes use solely of the invariance 
of the measure, the fact that the matrix elements U,, are commuting c-numbers and the 
unitarity of U. The physical consequences for the average and covariance of transmission 
and reflection coefficients are briefly discussed. 

1. Introduction 

The usual approaches to the study of disordered conductors are based on a perturbation 
treatment or on numerical simulations. One calculates averages of macroscopic physical 
quantities (like the total conductance) in terms of the microscopic statistical distributions 
associated with the individual scatterers (the literature being very extensive, we only 
cite two review articles: Erdos and Herndon (1982) and Lee and Ramakrishnan (1985) 
(together with the references contained therein), and the recent paper by Lee et a1 
(1987)). In various cases it was noted explicitly that different disordered microscopic 
Hamiltonians give the same final results (Lee and Stone 1985, Mello and Shapiro 
1988). It is indeed the basic physical assumption behind the scaling approach to 
disordered conductors that the transport properties on a scale larger than the elastic 
mean free path 1 are insensitive to the microscopic origin of the disorder. 

The above suggests the possibility of formulating a theory of disordered conductors 
which is independent of a particular choice for the disordered Hamiltonian. Such a 
theory was developed by Mello (1987,1988), Mello et a1 (1988b), Mello and Stone 
(1990) (a closely related approach has been proposed by Imry (1986) and Muttalib 
et a1 (1987)) and is briefly reviewed below, in order to provide the physical motivation 
for the present paper. 

Let the disordered system be placed between two perfect leads: there, the quantised 
transverse states define N channels for propagating modes, so that the wavefunction 

t Also at: Departamento de Fisica, UAM-I, Mexico, and Fellow of the Sistema Nacional de Investigadores, 
Mexico. 
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is specified by a 2N-component vector. The transfer matrix? M relates the vector on 
the right with that on the left. It was shown by Mello er a1 (1988b), Mello and Stone 
(1990) and Mello and Pichard (1989), that the M matrices can be represented in the form 

[U:’ 0 ][ ( 1  A1’2, ,2]  [ U:) 0 ] M =  u(3)  ( 1 + A )  u(4) * 
( l . l a )  

Here, u(j) ( i  = 1, . . . , 4 )  are arbitrary N x N unitary matrices and A is a real, diagonal 
matrix with N positive elements A I , .  . . , A N .  If, in addition, the system is invariant 
under time reversal, we have the restrictions 

u(3)  = u(4) = [u(2)]* ( l . l b )  

One can express the various quantities of interest in terms of these parameters. For 
instance, the N x N transmission and reflection matrices (when incidence is from the 
left) are given by 

Transmission and reflection coefficients are then defined as 

T a b  = 1 = lrabI2 (1.4) 
t a b ,  rab being the ab matrix elements of (1.2) and (1.3), respectively. 

An ensemble of M matrices is described by the differential probability 

dPL(M) =PL(M) dP(M).  (1 .5 )  
Here L is the length of the system and d p ( M )  the invariant measure of the group of 
M matrices, given by 

where 

( 1 . 6 ~ )  

(1.6b) 

and p = 1,2,  depending on whether the system is or is not invariant under time reversal. 
In (1.6a), dp(u“’) is the invariant measure of the unitary group U(N) ,  normalised so 
that 1’ d p  ( 

The probability density pL(M) must satisfy an important combination law: if we 
put together two wires of lengths L and SL, with probability densities p L  and p 6 L ,  the 
resulting probability density is given by the convolution pLtsL =pL *paL. The statistical 
distribution associated with systems of very small length 6L is selected on the basis 
of a maximum-entropy criterion. The ‘evolution’ with length of the joint probability 
density w L ( A )  of A l ,  . . . , A N  is then governed by the Fokker-Planck or diffusion 
equation 

= 1 .  

i The transfer matrix was designated by R in previous publications by the present author. 
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whereas the matrices u(j) appearing in (1.1) are distributed according to the invariant 
measure dF(u"') of the unitary group appearing in ( 1 . 6 ~ ) .  The p,(M) of (1.5) is thus 
independent of the u(j) and will be said to be isotropic. 

From the above model one can derive (Mello 1988, Mello et a1 1988a, Mello and 
Stone 1990) the weak-localisation effect and the associated backscattering peak, the 
universal conductance fluctuations and the correlations in the transmission and reflec- 
tion coefficients, in precise quantitative agreement with microscopic Green function 
calculations evaluated in the quasi-one-dimensional limit. Direct and crossed moments 
of transmission and reflection coefficients are thus our basic quantities, that we now 
examine in greater detail. 

If the distribution of transfer matrices is isotropic, (1.2)-(1.7) imply that the 
moments mentioned in the previous paragraph can be expressed in terms of averages 
of functions of A evaluated with the probability density w L ( A )  of (1.7) and averages 
of products of u'j), U(')* matrix elements evaluated with the invariant measure of the 
unitary group. We use the notation ( ) L  to indicate an average over A, while 

(f(u))o = I f ( u )  dF(U) (1.8) 

denotes an average on the unitary group, evaluated with the invariant measure dp(u) .  
Using (1.8) we define the quantities? 

(1.9) 

As an example we quote, in terms of this notation, the first and second moments 
of the transmission and reflection coefficients: 

(1.10) 

(1.11) 

(1.12) 

(1.13) 

where 

(1.14) 

The probability density w , ( h )  needed to evaluate the A averages in (1.10)-(1.13) 
is the solution of the diffusion equation (1.7), and the averages needed here were 
calculated approximately by Mello (1988) and Mello and Stone (1990). In contrast, 
the quantities Q of (1.9) are purely geometrical factors that can be evaluated exactly 
once and for all. It is the purpose of the present paper to evaluate the Q coefficients 
up to the order needed in (1.10)-(1.13). The results that we shall find here were quoted 
without proof by Mello et  a1 (1988a) and Mello and Stone (1990), and were used to 
explicitly evaluate the average and covariance of transmission and reflection coefficients 
(see also Feng et a1 (1988) for a microscopic calculation of these quantities and Etemad 
et a1 (1986) for some experimental results). 

t These quantities were called M by Mello et al (1988a). 



4064 P A  Mello 

Some of the Q coefficients of (1.9) corresponding to 1 = m = 1 , 2  were calculated 
by Gaudin and Mello (1981) with an entirely different physical motivation: the statistical 
theory of nuclear reactions. Here we shall employ a more powerful method to evaluate 
all the Q coefficients corresponding to 1 = m = 1 ,2 ,3 ,4 .  

The method that we shall use was devised by Mello and Seligman (1980) in 
connection with unitary and symmetric S matrices, again with a motivation coming 
from nuclear physics. 

As we shall see, the evaluation of the integrals (1.9) will involve no ‘direct’ 
integration at all, but will make use solely of the invariance of the measure dp(u) ,  the 
fact that the matrix elements U,, in (1.9) are commuting c-numbers, and the unitarity 
of the matrices U: from these properties, three conditions (I, 11,111, equations (2.3), 
(2.8), (2.9)) are derived in section 2 (an obvious consequence is, for instance, that 
Q = 0 unless 1 = m) .  In section 3 it is found that, for m = 1,2,  those conditions give 
rise to linear equations with a unique solution, i.e. they define the problem uniquely. 

In section 4 we indicate the most general form (proved in the appendix) that Q 
must take in order to satisfy condition I (directly associated with the invariance property 
of the measure); conditions I1 and I11 are then to be applied subsequently. That 
procedure is used in the same section to reproduce, as examples, the cases m = 1 , 2  
found in section 3, and to perform the calculation for m = 3 and 4 in sections 5 and 
6 ,  respectively. In section 7 we summarise the physical implications for the problem 
of disordered conductors of the results obtained in the previous sections. Conclusions 
and a discussion of our results are given in section 8. 

2. General properties of the Q coefficients 

Let uo be a fixed unitary matrix. Using, in (1.9), the transformation 

(2.11 U = UOU’ = u”u0 

together with the defining property 

d p  ( U )  = d p  ( U‘) = d p  ( U”) (2.2) 
of the invariant measure, we obtain the first condition: 

Condition I. 

(2.5a) 

(2 .5b )  
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As the phases ai are arbitrary, these expressions can only be satisfied if the two sums 
in the exponent cancel. This is the case if the (non-ordered) sets of upper and lower 
row indices (the latin indices) coincide, and similarly for the column indices (the greek 
indices); i.e. 

{a>  = {b) 1.1 = { P I .  (2.6) 

m = l  (2.7) 

In particular 

is a necessary condition for the Q coefficient to be non-zero. Equations (2.6) and (2.7) 
were previously obtained by Gaudin and Mello (1981). 

From the fact that the matrix elements U,. in (1.9) are commuting c-numbers, we 
have the next condition: 

Condition II. 

( 2 . 8 ~ )  
(2.8b) 

Finally, unitarity of the U matrices yields the third condition: 

Condition IIZ. 

(2.9) 

Clearly we could have contracted a, and b,, giving no new information, because of 
condition 11. 

1 Q a ~ U 1 9 a 2 0 i 2 9  ,amam = ai;Q%i:; ~ a t ~ ~ a ~ v ~  

a1 
a1P19b2P2+ .b,,,P,, ,b,,,B,,, ' 

3. The coefficients Q f o r  m = 1,2 

We now apply the general conditions I, 11, 111 found in the previous section to the 
evaluation of the Q coefficients for m = 1 and m = 2. 

For m = 1, (2.6) implies that Q Z :  is the only non-vanishing coefficient. Using a 
permutation for the uo of condition I shows that QZ: is independent of a and a. 
Condition I1 is irrelevant here. Condition I11 then gives Q:: = 1/  N, so that 

We now go over to m = 2. We first apply condition I(a) ,  equation (2,3a),  to Qi:;::, 
to find 

Here we have used (2.6), as well as 

Q:$t = Q:!::: 
which follows from condition 11. 

One can easily see that 
Q:t::t = ott::; a # b  
0:;::; = Q:;::: 

(3.3) 

(3.4a) 
(3.46) 
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as a result of condition I, where uo is chosen as the appropriate permutation. Using 
(3.4) and the unitarity of U', equation (3.2) becomes independent of uo and gives 

Q;;::;  = 2Q;;::;. (3.5) 

c Q:;::: = Q::  (3.6) 

Q:::::+(N- 1)Q::::: = 1 / N  (3.7) 

From condition I11 we now have 

a 

so that 

Condition I was again used in the second term of (3.7) and result (3.1) on the right-hand 
side. From (3.5) and (3.7) we then have 

2 
(3.8) 11,I l  - 

Q1lJ1 - N( N + 1) 
1 11,21 - 

Q 1 1 , 2 1  - N ( N + l ) '  (3.9) 

The procedure followed above is the same as the one used by Gaudin and Mello 
(1981), expressed in the language of the Q, and the present results (3.8) and (3.9) are 
the same as those given by equations (82) and (83) of that reference. 

We can now complete the m = 2 case, calculating the remaining Q coefficients with 
a procedure entirely similar to the one we just used. We first apply condition I to 
Qi;:::; we use condition I1 just as above and the result (3.9); U' again drops out 
because of unitarity, giving 

From condition I11 we obtain 

c Q2$ = 1 / N  

( N -  l)Q:;;;:+ Q::;::= 1/N 

R 

or 

(3.10) 

(3.11) 

(3.12) 
where we have used condition I in the first term. Employing (3.9) for the second term, 
we find 

(3.13) 

Equation (3.10) then gives 
1 

(3.14) 23.14 - Q 13,24 - - ( N -  l ) N ( N +  1) '  
Application of condition I with the appropriate permutation for U' shows that (3.8), 

(3.9), (3.13) and (3.14) cover all possibilities for m = 2. 

4. The general structure of the Q coefficients from condition I 
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We show in the appendix that the most general Q satisfying condition I is a linear 
combination of terms like (4.1); the sum contains terms with all possible permutations 
of the indices, the coefficients in front being independent of such indices. Here we 
just prove that a Q so constructed satisfies condition I. The transformation ( 2 . 3 ~ )  
applied to the full Q affects the term containing (4.1) as (repeated indices are summed 
over) 

0 )*A ,... 4 ,,,,A OL I I,... 

= (uobldI . . . ~ob, , ,~ , , , ) (u:~.~, .  . . . u",,~,.,,~,)*A;',::;:.~~,A;;:,~::~~::'.. 

(uob,61 ' * * u o b m 6 m ) ( u ~ ~ d l  * ' '  u:ozc3m bl , , ,bm,  ol,,,p,,, 

(4.2) 
To get the second row we have changed the order of the factors occurring in the second 
group of U'. This is convenient because, using the unitarity of the matrix U' and then 
employing the definition (4.1) of the A, we can write (4.2) as 

(4.3) 8;;' . . . 82'Aal. , . . ."d - A a  ,,... aml ,Aal  ,,... ",, 
m PI. . .@, - bi. . .btn Pi., .P,, 

which coincides with the original term (4.1) to which we applied the transformation. 
A similar analysis can be carried out with the transformation (2.3b). This then 

proves the statement. 
We have thus disposed of condition I. It remains to fulfil conditions I1 and 111. 

This will be implemented for each particular m that we shall work with. In this paper 
we consider the cases m = 1,2 ,3 ,4;  we shall see that the procedure just outlined gives 
a unique answer, thus indicting that, at least for those cases, conditions I, 11, I11 define 
the problem uniquely. 

As examples, we work out in this section the cases m = 1,2  that were analysed in 
the previous section. The cases m = 3, 4 will be treated in the following sections. 

m = 1. Our ansatz gives 
Qgg = AAZA;.  

Condition I1 is irrelevant. Condition I11 gives 
1 AAZAZ = A i  
a 

so that A = 1 /  N and 

just as in (3 .1) .  

m =2. Our ansatz consists of the linear combination 
Q a ' a , , b ' p ' -  - AA;P,A:P,,+ CA::~,A~:~.+ BA;P,~AP,:~,+ DA:~~.A;$. (4.7) 

Under condition II(a) (equation (2.8a)), a and b are interchanged and a and p 
are simultaneously interchanged: the first two terms of (4.7) then get interchanged, as 
well as the last two terms. 

Under condition II(b) (equation (2.8b)), a' and b' are interchanged and a' and p' 
are simultaneously interchanged: this operation again interchanges the first two and 
the last two terms in (4.7). To fulfil condition I1 we then choose 

A = C  B = D  (4.8) 

(4.9) 

so that 

Q ::;bfjPt = A ( A :bb .A ;GI + A ::b,~ E; J + B ( A : : b , ~  fpb I + A : : b f ~  :: .) . 
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Now we have to satisfy condition I11 (equation (2.9)). We have 

(4.10) 

where we have used (4.6) in the last step. 
We then get the two linear equations 

(4.11) 1 
N 

N A + B = -  A + N B = O  

with the solution 
1 B = -  1 A=- 

N 2 - 1  N (  NZ- 1) '  
Substituting in (4.9) we then have the answer 

Q a a i h p  -- 1 ( A : ~ ~ , A : ? ~ , +  A",~ .AP, : , . )  - 1 ( A  zbb . A  pa:, I + A :ab . A  :?, .) . 
a'u',b'p'  - N2-1  N(N'-I)  

(4.12) 

(4.13) 

We can easily check that the results (3.8), (3.9), (3.13) and (3.14) are particular 
cases of the general expression (4.13). 

In the above analysis we had to consider permutations of the latin indices among 
themselves and of the greek indices among themselves. Before closing this section we 
mention some concepts in connection with permutations that will be useful later on. 

Consider a collection of indices, their place of occurrence being indicated by a 
numeral: 

place + 1 2 3 4 . . . 
index + a p y S . . . .  (4.14) 

Let us denote by (12) a transposition of places 1 and 2, and by (cup) a transposition 
of the indices cu and p and similarly for other numerals and letters. The following two 
properties will be important for us. 

(i) Two place or index transpositions do not commute when they have one element 
in common. 

For instance, under (13) (12) (applied from right to left), cupy6 becomes yaps, 
while under (12) (13) it becomes pyas. 

(ii) A place and an index transposition commute. 
For instance, under (12) (cup), or (cup)(l2), cupyS becomes apy6;  under (23) (ap),  

or (a/3)(23), it becomes pya6 ;  under (34) (cup), or ( a p )  (34), apy6 becomes posy. 
We shall use below the notation (cup?. . . 6 )  to denote the cyclic index permutation 

that replaces a by p, p by y, . . . , 6  by cu ; the notation (1 2 3 . . . 4 )  denotes the cyclic 
place permutation that takes the letter in place 1 to place 2, the one in place 2 to place 
3 , .  . . , the one in place 4 to place 1. 

5. The Q coefficients for m = 3  

We calculate in this section the coefficient 

which, according to the discussion at the beginning of section 4, we write as a linear 
combination of 3 ! 3 ! = 36 terms, obtained from 

(5.2) 

Q::;b,;;,c.y. (5.1) 

A;~;, , .A, , , , , ,  U P Y  



Averages on the unitary group 4069 

by leaving the lower indices as they stand and permuting a, 6, c in 3! ways and 
a, P, y in 3! ways. We organise the 36 terms as follows. 

First, consider the six terms 

(5.3) 

Each terms is indicated just by the upper indices of each A, since we agreed to leave 
the lower indices as in (5.2); square brackets enclose latin indices, and round brackets, 
greek indices. For instance, the first term [abc](apy) in (5.3) is just (5.2). Above each 
term in (5.3) we have indicated the index permutation that applied to [abc](apy) gives 
the term in question. Notice that each permutation of latin indices is accompanied 
by the same permutation of greek indices: this corresponds to a permutation of the 
uf, in the Q coefficient in (1,9), as in ( 2 . 8 ~ ) .  Thus the operation ( 2 . 8 ~ )  applied to 
one term in (5.3) generates the other five. Condition II(a)  thus implies that the six 
terms (5.3) must have the same coejicient. 

We now apply to the greek indices of (5.3) the place transpositions (12), (13), (23), 
to get, respectively ([e] denotes the unit element applied to the latin indices): 

(5.4) 

(5.5) 

(5.6) 

abcl(Pffr)  [ bacl( [ cba 1 (Pya 1 

abc l ( rPa )  [bacl(r@) [ cba I( .Pr) 
acbl(Pya 1 [ bca I( QYP 1 [ cab1 ( P a r  1 

E abcl( a YP 1 [ bacl ( P y a  1 [cbal( YQP 1 
[ acb l ( aPr )  t bcal(Par)  I: cab 1 ( rPa 1 * 

[eI(l2)*{ [ c acb l ( r aP)  tbcal(yPa)  [cab]( .rP 1 

[el(W*{ 

[e1(23)*{ 

We can easily check that if we apply the index permutations indicated in (5.3) to 
one of the terms in (5.4), we generate the other five terms; a similar fact occurs with 
(5.5) and (5.6). For instance, [ac](ay)  (which, applied to the first term in (5.3), gives 
the third term), applied to the first term in (5.4) gives the third term of (5.4). This is 
easy to understand: the operation in question can be thought of as, first, applying to 
the first term in (5.3) the place transposition [e](l2) and, next, the index transposition 
[ac](ay);  since place and index transpositions commute (see the end of last section), 
we could have first applied [ac](ay)  to the first term in (5.3) to get the third one; 
application of [e](12) then gives (according to the way in which (5.4) was constructed) 
precisely the third term of (5.4). 

As we mentioned above, each of the permutations indicated in (5.3) corresponds 
to an operation associated with condition II(a) ;  that condition thus implies that the 
six coeflcients in (5.4) must have the same coeBcients, and similarly for (5.5) and (5.6). 

We can also interpret each term in (5.3) as being obtained from the first one by 
applying the place permutation indicated on top of the corresponding term in the 
following sequence 

[I21 (12) ~ 1 3 1  (13) 
[ abcI( .Pr [ bac l (Pa r )  [ cba 1 ( YP. 1 

acb l ( a rP )  [: bcaI(Pra)  [cab]( r.P 1. 

(5.7) 
[231 (23) [132] (132) [ 1231 (123) 
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The place permutations indicated above are the same for latin as for greek indices, 
so they are equivalent to the same permutation of the latin and of the greek lower 
indices of the A in (5.2); they thus correspond to a permutation of the U,, in (1.9), 
and hence to one of the operations (2.8b): any one of these operations applied to a 
term in (5.7) generates the other five. Condition II(b) thus implies the equality of the 
corresponding coefficients, which we already found in connection with property 11( a ) .  

On the other hand, it is easy to check that if we apply all the place permutations 
indicated in (5.7) to one of the terms in (5.4), we do not stay inside (5.4), but get terms 
belonging to (5.4), (5.5) and (5.6). For instance, application of [13](13) to the first 
term in (5.4) gives the third term in (5 .6) .  This is easy to understand: we can think of 
first applying [e](12) to the first element of (5.7), followed by [13](13); if these two 
operations commuted, we could apply [ 13]( 13) first, to get the third term in (5.7), and 
then [e](l2), to get the third term in (5.4), and we would not get outside of 
(5.4); because of the lack of commutativity we have, instead, [13](13)[e](12) = 
[e](23)[13](13), which first takes us to the third term in (5.7), and from there to the 
third one in (5.6). Non-commutativity, in general, of place permutations, is thus 
responsible for this fact. We found above just one coefficient for the six terms (5.4), 
one for (5.5) and one for (5 .6);  condition II(b)  now implies the equality of the three 
coefficients. 

Finally, we apply to the greek indices of (5.3) the place cyclic permutations (123) 
and (132) (see the end of the previous section), to get, respectively 

(5.8) 

(5.9) 

[abcI(y.P) [ bacI( YP. ) [ cba 1 (.YP 1 
[acbl(P.r) [ bca I( 437) [cabl(Pr.) 

[abcI (Pra)  [ bac 1 rP ) [ cba 1 ( P a y )  
[ acb 1 ( YP. 1 [ bcal( rap ) [ cab 1 ( QP Y 1. 

[e l (  123) 3 { 
[e1(132)=+{ 

Again, operation I I (a )  generates the various terms inside (5.8) or (5.9), while II(b) 
mixes (5.8) and (5.9). All the coeficients of the terms in (5.8) and (5.9) are thus the same, 

Expressions (5.3)-(5.6), (5.81, (5.9) contain the 36 terms needed. The linear combi- 
nation that satisfies conditions I and I1 is thus (in the notation explained directly 
following (5.3)) 

Qz?$tg,c.,,.= A{[abc](a/3y) + [ b a c ] ( P ~ ~ y ) + [ c b a ] ( y ~ c r )  

+[acbl(.YP)+[bcal(PY.)+[cabl(Y.P)} 

+ W[abcl(P.y) + [bacl(.Pr) + [cbal(Pr.) 

+ [ acbI( 7.P 1 + [ bca I( rPa 1 + [ cab1 (.YP 1 
+ Labcl( YP.1 + [ bacl(r.P 1 + [ cbaI(.Py) 

+ [acbl(Pya) + [bcal(.rP) + [cabI (Par )  

+[abcl(~rp)+[bacl(Pr~)+[cbal(rcuP) 
+[acbl(.Pr) +[bcaI(P.r) +[cabl ( rPa) l  

+ C{[abcI( rap 1 + [bacl( YP. 1 + [ cbal( V P )  
+[acbl(P.r)+[bcal(aPr)+[cabl(pra) 

+ [ abc 1 ( P y a  1 + [ bac 1 ( rP 1 + [ cba 1 (P. Y 1 
(5.10) 
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(5.11) 

x {[bcl(.rP) +[cbl(.Pr)l. (5.12) 
In (5.12) the A associated with the latin indices has lower indices b'c', and that 

Equating, in (5.12), the coefficients of the various A, we get the four linear equations 
associated with the greek indices has lower indices a'p 'y ' .  

1 
NA+2B=- 

N2-1 
A + N B + C = O  
2 B + N C = O  

1 
N B + 2 C = -  

N(N ' - I )  

( 5 . 1 3 ~ )  

(5.13b) 
(5 .13~)  

(5.13d) 

of which only three are independent: indeed, substituting A from (5.13b) and B from 
(5 .13~)  into (5.13a), we obtain (5.13d). The solution of (5.13a)-(5.13c) is 

N 2 - 2  
N (  N2 - 1)( N2 - 4) 

1 
( N2- 1)(N2-4)  

A =  

B = -  

-I 

C =  
L 

N ( N 2 -  1)(N2-4) '  
Equations (5, lo),  (5, 14)-(5, 16) are the solution to our problem for m = 3. 

6. The Q coefficient for m = 4  

We calculate in this section the coefficient 
Q:$t2,:?7:, I . 

(5.14) 

(5.15) 

(5.16) 
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According to section 4, we write (6.1) as a linear combination of 4!4! terms, obtained 

A;~;$~,A ::"y.,. (6.2) 
by leaving the lower indices as in (6.2) and permuting abcd in 4! ways and apyS in 
4! ways. The linear combination that satisfies conditions I and I1 can now be written 
as (in the notation explained directly following (5.3)) 

from 

Q::;b;;$Py.,d, 6' 

= A{ [abcd ] (apyS)  +[abdc](apGy) + [ a c b d ] ( a y p S )  
+[acdb](aySp)+[adbc](aSpy) f [ a d c b ] ( a S y p )  
+ [ bacdl (pay8)  + [ badc](paSy)  + [ bcadl (pya6)  

+ [bcda](pySa)  + [ b d a c ] ( p b a y )  + [ bdca](/3bya) 

+ [ cabd]( yaps)  + [ cadb]( yaSp) + [chad]( yP.8) 

+[cbda](ypSa)+[cdab](ysap)+[cdba](ySpa) 
+[dabc] (Sapy)  +[dacb](Gayp)+[dbac](GPay) 
+ [dbca](Spya)  + [ d c a b ] ( S y a p )  + [dcba](Sypa)}  

+ B{ [ abcd]( para) + . . . + [ dcba] ( ySpa) 

+[abed]( y+S) +. . . + [ d c b a ] ( p y S a )  
+ [ a b c d ] ( S P y a ) f .  . .+[dcba](aypG) 

+ [ a b c d ] ( a y p G ) + .  . .+[dcba](Gpya)  
+ [abed]( aSyp) + . . . + [dcba]  (Sap y ) 

+ [abcd ] (apSy)+ .  . .+[dcba](Gyap)}  

+ C { [ a b c d ] ( y a p G ) + .  . .+[dcba](PSya) 

+ [ abcdl(pya8)  + . . . + [dcba]( ypSa) 

+ [ a b c d ] ( S a y p )  + . . .+ [ d c b a ] ( a S p y )  
+[abcd](PGya)+.  . .+ [dcba](yapS) 

+ [ a b c d ] ( S p a y ) + .  . .+ [dcba](aySp)  

+ [abcd ] (ypSa)+ .  . .+ [dcba](pyaS) 

+ [abcd ] (aSpy )+ .  . .+[dcba] (Sayp)  

+ [ abcd]( .yap) + . . . + [ dcba]( Spay) }  

+D{[abcd](paSy)+.  . .+ [dcba](ySap)  

+ [ a b c d ] ( y S a p ) + .  . .+[dcba] (paSy )  
+[abed]( Sypa) +. . . + [dcba](apyS)}  

+E{ [abcd](Sa/3y)+.  . . + [ d c b a ] ( a S y p )  

+[abed]( yaSP) +. . .+ [dcba] (PSay)  
+ [ a b c d ] ( S y a p ) + .  . .+[dcba] (aPSy)  

+ [ a b c d ] ( p S a y )  +. . .+[dcba] (yaSP)  
+ [abed]( ?Spa) + . . . + [ dcba]( P a y s )  

+ [ a b c d ] ( / 3 y 8 a ) + .  I .+[dcba](y/3a8)} .  
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In each line of (6.3) containing an ellipsis (. . .) there are 24 terms (of which only 
the first and last one are shown), obtained by applying one of the following place 
permutations to the greek indices of the 24 terms that multiply the coefficient A: (12), 
(13), (14), (23), (24), (34), to obtain, respectively, each of the six lines that multiply 
the coefficient B; (123), (l32), (124), (142), (134), (143), (234), (243), respectively, for 
the eight lines that multiply the coefficient C; (12)(34), (13)(24), (14)(23), for the three 
lines that multiply the coefficient D ;  (1234) (1243), (1324), (1342), (1423), (1432), for 
the six lines that multiply the coefficient E. 

Just as in the previous section, a transformation associated with condition 11( a) ,  
equation (2.8a), transforms among themselves the 24 terms inside the curly bracket 
that multiplies A in the above equation, as well the 24 terms inside each one of 
subsequent rows; a transformation associated with condition 11( b), equation (2.8b), 
again transforms among themselves the terms inside the curly bracket that multiplies 
A, but it also mixes the various rows contained in each of the subsequent curly brackets. 
The net result is that we have five different coefficients (A, B, C, D, E),  that have to 
be fixed using condition I11 (unitarity), equation (2.9). 

We thus insert (6.3) on the LHS of (2.9) and (5.10) on the RHS. Equating the 
coefficients of the various A, we obtain the linear equations 

"-2 
N (  N2- 1)(N2-4) 

A N + 3 B =  

A +  N B + 2 C  = 0 
2Bi- NC + E = 0 
B + N D + 2 E = O  

2 C i -  Di- NE = O  

1 
( N2- 1)( N2 -4) 

NBi-2C + D =  - 

NCi-3E = 
L 

N( N2 - 1)( N 2 - 4 ) '  

( 6 . 4 ~ )  

(6.4b) 

( 6 . 4 ~ )  
(6.4d) 

(6.4e) 

(6.4s 1 

Equations (6.4a)-(6.4e) constitute five independent relations among the coefficients 
A, B, C, 0, E, whose solution is 

N4- 8 N 2 + 6  
N 2 ( N 2 - 1 ) ( N 2 - 4 ) ( N 2 - 9 )  

A =  

1 
B = -  (6.6) 

C =  (6.7) 

D =  (6.8) 

E = -  (6.9) 

One can easily check that the above solution satisfies the remaing equations (6.4f), 

Inserting (6.5)-(6.9) in (6.3) we have the expression for the Q coefficient for m = 4. 

N(  N2 - 1)( N2-9)  
2 N 2 - 3  

N 2 (  N 2 -  1)( N 2  -4)( N 2 - 9 )  
N 2 + 6  

N2(  N2 - 1)( N2 -4)( N2 - 9) 

5 
N (  N2- 1)( N 2 - 4 ) ( N 2 - 9 ) '  

(6.4g). 
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7. Applications to the problem of disordered conductors 

In this section we summarise the physical consequences found by Mello et a1 (1988a) 
and Mello and Stone (1990) using the results derived in the previous sections. 

From (1.10) and (3.1) we find, for the average of the transmission coefficient 

where T = &  Tab is the total transmission coefficient into all channels, when the 
incident ones are fed with N incoherent fluxes; T can also be identified with the 
conductance g of the system measured in units of e’/ h, for ‘spinless electrons’ (Fisher 
and Lee 1981). 

Using (4.13) we can calculate the crossed second moment (1.11) of the transmission 
coefficients; we then get, for the covariance 

the expression 

Here we have defined 

N 2 +  1 
A -  

1 
Tk = ; ( 1 + ha ) k  - N ~ ( N ’ -  i12 

L 1 c -7. 
N - N  

B -  - N ~ ( N ~  - 112 

Equation (7.3) is exact. As a check, we can easily verify that the sum of (7.3) over a, 
b, a’, b‘ gives precisely var T. The structure of (7.3) is the same for p = 1,2, although 
the value of the coefficients of the 6 functions does depend on the specific value of p. 

Feng et a1 (1988) in their equation (3) also obtained three types of terms for the 
covariance (7.3): setting W<< L (quasi-iD systems) they are seen to have essentially 
the structure provided by the S functions of (7.3). The difference is that our Kronecker 
deltas are replaced by functions which peak at those wave-vectors which satisfy the 
appropriate Kronecker deltas in our calculation, but decay over some distance in 
momentum space. 

To be more specific about the coefficients of the 6 functions in (7.3), we now use 
the results of Mello (1988) and Mello and Stone (1990). To leading order in N >> 1 
and for L/l>> 1 one finds 

Here we have dropped the index p in ( T a b ) L  and ( T ) L ,  because the leading 
independent of p. Equation (7.5) is consistent with (3) of Feng et a1 (1988). 

Summing (7.5) over a, b, a’, b’, we find 

(7.5) 

term is 

(7.6) 
1 + 6  

15 
var T=A 
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a result that is independent of the number N of channels, the length L of the conductor 
and the elastic mean free path 1 (universal conductance fluctuations). 

We now turn to a study of the reflection coefficient Rab. 
Using (4.13) we obtain, for the average reflection coefficient (1.12), the expressions 

(7 .7a)  

(7 .76)  

Equation (7 .7a)  means that, with time-reversal symmetry ( p  = l ) ,  backward scatter- 
ing to the same channel is enhanced by a factor of 2 as compared with scattering to 
any other channel. This is precisely the prediction of weak-localisation theory, where 
one finds that the various paths contribute with random phases, except for a path and 
its time-reversed one, which contribute coherently and give rise to a factor 2 in the 
backward direction. 

Using (4.13) and (6.3) we can now calculate the crossed second moment (1.13) of 
the reflection coefficients, and then the covariance 

To leading order in N and in the limit L / ?  >> 1 we get 

(7.9b) 

We can easily verify that the sum of (7.9) over a, b, a', b' gives var R = var T as 
given by (7 .6) .  

It would be very nice if one could measure, probably in optical experiments, the 
correlations studied above, which, as we saw, have expressions that are far from 
obvious. 

8. Summary and conclusions 

The purpose of the present paper was to calculate the geometrical Q coefficients of 
(1.9) up to the order required by the maximum-entropy theory of disordered conductors 
to compute averages and covariances of transmission and reflection coefficients; the 
physical consequences for these latter quantities were also briefly discussed. 

The Q coefficients must satisfy conditions I, I1 and 111 found in section 2, which 
arise, basically, from the invariance of the Haar measure, the fact that the matrix 
elements U,, are commuting c-numbers and unitarity of the matrix U. We found the 
most general structure of the Q coefficients in order to fulfil condition I, arising from 
the invariance property of the measure. Conditions I1 and I11 were then imposed 
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subsequently for the cases m = 1, 2, 3, 4 and shown to yield a unique answer to the 
problem. 

The Q coefficients calculated in sections 2-6 are used in section 7 to find averages 
and covariances of transmission and reflection coefficients. Results are consistent with 
the enhanced backscattering predicted by weak-localisation theory; we also found, for 
the covariance of the transmission coefficients, results that, in the quasi-iD limit, are 
consistent with microscopic diagrammatic calculations. 

Finally, we remark that the case for which the method used here was originally 
devised (Mello and Seligman 1980) dealt with unitary and symmetric matrices, which 
do not form a group. In contrast, the matrices U of (1.9) are not restricted by the 
condition of symmetry, so that they form the unitary group U ( N ) .  It is thus conceivable 
that our results could be obtained, perhaps in a simpler way, in terms of the coupling 
coefficients of U( N ) ,  using the fact that integrals over matrix elements of irreducible 
representations of compact groups with the Haar measure are quite trivial. This 
alternative procedure would be worth investigating. 
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Appendix 

We prove here the assertion made at the beginning of section 4 that the most general 
satisfying condition I is a linear combination with constant coefficients of Qa b i P i . . . . , b m P m  a 

terms like (4.1). 
Consider, to begin with, the simplified object q:;::::;;, that satisfies the transformation 

law 

I . . . . . a m ~ m  

We shall prove that the most general q satisfying (A.l )  is a linear combination, with 
constant coefficients, of terms like A:;::';;'. We first work out the cases m = 1 , 2 , 3  and 
then present the generalisation to arbitrary m. 

m = l .  Equation (A. l )  now has the form 

Equation (2.6) implies for 4;: the form 
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Condition (A.2), with U chosen as 

i- 

U =  

j -  

4077 

shows that Ai  = Aj ,  so that 
q: =AS;  

which proves the statement. 
We notice that (AS)  is nothing but Schur's lemma of group theory. In fact, (A.2) 

can be written in matrix notation as 

q = uqu? ('4.6) 

qu = uq. (A.7) 
or 

Schur's lemma states that a matrix that commutes with all the matrices of an 
irreducible representation (which is the case here, because the N x  N matrices U are 
the defining matrices of U( N ) )  must be a multiple of the unit matrix: this is our (AS) 
above. 

m =2. From (2.6), q must be of the form 

4;:;: = Ab,,A;:;i+ Bb,b2A;:;:- (A.8) 

Let b, # b,. Consider a ,  = b, ,  U ,  = b,. Then q!::= A,,,. From (A. l )  with the appropri- 
ate U (like (A.4)) we can show that q:::; is independent of b l ,  b l ,  so that Ab,+,;? = A. 
Similarly, BbIZb2 = B. For arbitrary b, , b, we then have 

Equation (A. l )  shows that Q$ is independent of b, so that Cb = C ;  i.e. 
q;:;: =AA;:;:+ BA;::: f CblSb,b2Ai::. (A.9) 

q;:;: = AA"'"'+ bi b2 BA;$: + c8blb2A;:i:. (A.10) 

We now apply (A. l )  to (A.10). The first two terms of (A.lO) cancel, because they 
satisfy (A. l )  identically, according to the general proof at the beginning of section 4. 
We then have 

c ~ b l b 2 A ~ : i ~  = c ~alcu~2c(~b,cu,c)*- ( A . l l )  
C  

For example, for 

41 = U , =  b,= b, 1 (A.12) 
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( A . l l )  becomes 

c = c c IuicI4 
C 

(A.13) 

Since (A.13) must be satisfied for an arbitrary unitary matrix, we obtain C = 0. Thus, 
for m = 2, 

q a l a 2  =AA:;;;+ BA"2"l 
bib2 blb2 

is the most general q satisfying (A.1). 
m = 3. An analysis similar to the one that led to (A.lO) shows that, for m = 3, q must 
be of the form 

(A.14) 

In applying (A.l )  to (A.14) we recall that the first six terms of (A.14) satisfy (A.l )  
identically, so that we have 

8b ,b2(  GAi:i$: + HAa2a3a1 bibiba + IAa'a3a2) bibib3 

+ ab,,( J A a I a 2 ' 3  + KAa2"Ia3 + LAala3'2) 
bibzbi bIb2bl blb2bl 

+8b2b3(MA:$$ l+  NAa2"'"'+Pha bibzbz b:b: a b:) 

+ ablb28b,b3RA",:E:l: 

= c a a , c u a 2 c (  u b , c u b c ) * 8 2  + H u a z c  ua3c (  u b l c u b c ) *  8:: 
C 

+ lua, c ua3c (  u b ,  c u b c  ) * 8 2 + Jus, c u a 3 c (  Ubl cub3c * 8:; 
+ K U a 2 c  u a 3 c (  u b l  cub3,) * 8 gi + Lua, c 

+ MUa2cUa3c(ub2CUb3c)*8:: + Nualcua3c(ub2cub3c)*8ab:  

( u b , c  ub3c )  * 

+ ~ ~ a I c ~ a 2 c ( u b 2 c ~ ~ c ) * ~ ~ ~ l  + Rua,cUa2c~a3c(Ub,cUb2c~b3c)*. (A.15) 
C 

Suppose we choose the indices in (A.15) as 

( a l a 2 4  = (112) (bib,b,) = (112). (A.16) 

Then (A.15) becomes 

G = c GI 1 c I + Hu 1 c u 2 c  ( :c 1 * 8 + 1 c u 2 c  ( :c ) * 8 + Ju 1 c u 2 c  ( i c u 2  c * a 
C 

+ K ~ I C U ~ C ( U : C ) * ~ :  + L u : c ( u i c u 2 c ) * 8 :  + M ~ ~ C U ~ C ( U ~ C U ~ C ) * S ~  

+ N u l c u 2 c ( u : c ) * 8 :  + fi:c(ulcu2*,)8:+ R U : c ~ 2 c ( ~ : c U 2 c ) * l .  (A.17) 
On the right-hand side of (A.17) we observe the following property of the various 

terms beyond the first one: apart from the Kronecker deltas which make various of 
them vanish, they all contain U matrix elements associated with the rows 1 and 2: i.e. 
u l C  and uZc. 
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Therefore, if we choose U as 

1 1 4  0 1 / 4 2  

U =  -1/a 0 1 / 4 2  
0 1 0  I 

0 L 

0 

1 

1 

(A.18) 

every term on the right-hand side of (A.17) vanishes, except the first one; we thus get 
G=0. 

A similar analysis can be carried out for the choice 
( a I a 2 a 3 )  = (211) ( b l b 2 b 3 )  = (112) (A.19) 

to show H = 0. Similarly, one finds that all the coefficients in (A.15) up to P vanish. 
Finally, we choose 

( Q l W 3 )  = ( 1 1 1 )  (blb2b3) = (111) .  (A.20) 

Since G =  . . .=  P = 0 ,  (A.15) gives 

R = R c / U l C l 6  
C 

(A.21) 

Vu, so that R = 0. 

terms of (A.14). 
In conclusion, the most general q satisfying (A. l )  for m = 3 contains the first six 

The generalisation to arbitrary m is now clear. Equation (A.14) becomes 
"la2")..% = (AAa;a;a;:::am b b b  b, + BAa1"2'a3''''a blb2b 3...bmm'+. *) 4 b ,  b2b3 ... 6 ,  

a1a2a 3.. .am + H A a l , a 2 , a 3  ,... a + 8b,b2( GA b,b\b ,... b, 

+ 6 b l b 3 ( J A b l b 2 b  ,... 6: + K A b , b 2 b I . . . b ,  + *  * 

+ * * + abl b 2 8 b 2 b 3 ( R A  bib, blb+..bm 

blbIb3...b,,,, + *  * *) 
a1a2a 3...a a ,n2 ,a3  /... ami 

a1a2a3a &..am + sAal.a2.a3.a4....a,,,, blb,b,b+..b, +. . * )+*  * * * (A.22) 
In the above equation, the lines beyond the first one correspond to two, three, etc 

coinciding indices. 
We now apply the transformation (A.1) to (A.22), whose first line, as usual, satisfies 

(A.1) identically. As an example, the term that multiplies H in (A.22) transforms as 

(A.23) 
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If in (A.22) we make the choice of indices 

(a,a,a,. . . a,) = (112. .  - 2 )  (blb2b3.. . b,)=(112. . . 2 )  (A.25) 

the term with G is singled out on the left-hand side, just as in (A.17). On the right-hand 
side, the first term is GEc IulCl4 and, just as in (A.17), all the other terms contain U 
matrix elements associated with rows 1 and 2 and thus give a vanishing contribution 
if U is chosen as in (A.18). We thus conclude that G = 0. 

Appropriate choices of the indices then show, just as for m = 3, that the remaining 
coefficients vanish too. As a result, the first line in (A.22), i.e. 

(A.26) 

is the most general q satisfying (A.1). 

m = 1. For general m, (A.l) can be written as 
It is interesting to view (A.26) as a generalisation of Schur's lemma mentioned for 

q(ux .  * . x U) = ( u x . .  * x u)q (A.27) 

using the matrix notation employed in (A.6) and (A.7). In (A.27) each U acts on a 
pair of indices aib, of q. Since the direct product U x . . . x U is not irreducible, Schur's 
lemma does not apply, as it did for m = 1; what we have proved instead is that q must 
be of the form (A.26). 

We recall that we want to construct the object Q that satisfies condition I of ( 2 . 3 ~ )  
and (2.3b). If we start by requiring (2.3a), Q must have the form (A.26), the coefficients 
depending now on the greek indices. That is 

(A.28) 

If we now impose (2.3b), we see that A;::::;::, B;::::;:; must have the structure (A.26) 
with greek indices and constant coefficients. This proves the statement made in the 
first paragraph of this appendix. 

Qa,cY ,,..., a,nam = A a l . , . o m  ul...a ,,,.. a n , , B ~ l . . . a , , ,  
blp ,  ,..., b,,,P,, bl...b,,API...p: + Aubl...b,, PI. .$ ,  +. . . . 
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